Difference between Inertia and Momentum

Key Difference:  Inertia can be described as a property or tendency of an object that resists any change to its state of motion. Thus, a body stays at rest or continues its motion, unless acted on by an external force. Momentum can be described as the resistance to stop. Moving bodies are associated with momentum as it becomes a kind of inertia for them.

Inertia is the property of a body by virtue of which it opposes any change to its state of motion. This inertia is directly proportional to its mass. It means that an object with a higher mass would posses higher inertia in comparison to an object with a lower mass. Newton’s first law states that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force. This postulate is also known as the Law of Inertia.

Momentum can be described as the resistance to stop. Moving bodies are associated with momentum as it becomes a kind of inertia for them. It is calculated by multiplying mass of the object with its velocity. Force is directly proportional to the rate of change of momentum with time. It is usually denoted by the symbol p. It is a vector quantity and points in the direction of motion. Therefore, an object can have a positive or a negative momentum depending upon the direction.

Comparison between Inertia and Momentum:

 

Inertia

Momentum

Definition

Inertia can be described as a property or tendency of an object that resists any change to its state of motion.

Momentum can be described as the resistance to stop. Moving bodies are associated with momentum as it is inertia in motion.

Type

Natural tendency

Unit of measurement

Formula

Cannot be calculated using a formula

Linear Momentum P = mass X velocity

Angular momentum L = moment of inertia X angular velocity.

Forms

No other forms

Linear and Angular momentum

Conservation

Not required

Required to solve some problems

Dependency

Mass

Mass and velocity

Quantitative Aspect

Scalar

Vector

Image Courtesy: greenlightcard.wordpress.com, calctool.org

Most Searched in Sports Most Searched in Games and Recreation
Most Searched Non-Alcoholic Drinks Most Searched in Home and Garden
Empirical vs Molecular Formula
Actor vs Actress
Hyundai i20 vs Maruti Suzuki Swift
Younger vs Elder

Add new comment

Plain text

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.