Difference between Bone and Cartilage

Key Difference: The main difference between bone and cartilage is that bone is a hard and rigid tissue, whereas the cartilage is a soft, elastic and flexible tissue. The cartilage is present in the ears, nose, and joints of the body, whereas bones make up the skeletal system of the body.

The human is a complex being, which consists of a complex skeletal system that includes bone and cartilage among various others. Bone is the basis of the skeletal system; however, others like the cartilage also serve an important function, without which the skeletal system will not last very long.

The main difference between bone and cartilage is that bone is a hard and rigid tissue, whereas the cartilage is a soft, elastic and flexible tissue. The cartilage is present in the ears, nose, and joints of the body. In the joints, the cartilage covers the ends of the bones and acts as a shock absorber to prevent bones from rubbing against each other.

The bones serve a variety of major functions in the human body, which includes giving the body form; without bone our bodies would be jelly-like. Bones also help us avoid mechanical injury or damage. They also give the body the ability to move and function, as well as acting as a surface for the muscles and tendons to attach.

Bones also contain bone marrow where red blood cells and while blood cells are produced. In addition, bones also act to protect the organs such as heart, brain, lungs, and many more.

However, as bones are rigid they have the tendency of rubbing against each other, which causes the bones to erode. This is where the cartilage comes in. The cartilage acts as insulation for the bones which prevents the bones from rubbing against each other and eroding.

Comparison between Bone and Cartilage:

 

Bone

Cartilage

Description

A bone is a rigid organ that forms part of the vertebral skeleton.

Cartilage is a flexible connective tissue that stops the bone from rubbing against each other.

Types

Bones are of two types: compact or spongy. They are also classified into long, short, flat, irregular, sesamoid and sutural bones.

Hyaline cartilage, fibrocartilage and elastic cartilage.

Function

Protect the body against mechanical damage, assist in the movement of the body, provide a framework and shape for the body, store minerals, and produce red blood and white blood cells.

Reducing friction at joints, supporting the respiratory tract, acting as shock absorbers between weight-bearing bones, and maintaining the shape and flexibility of fleshy appendages.

Structure

Bones are made up mostly of osteoblasts (progenitor cells), osteocytes (mature bone cells), and osteoclasts (large cells that breakdown bone tissue for growth and repair).

Cartilages comprise chondroblasts, (precursor cells), chondrocytes, and a dense matrix of collagen and elastic fibers, in which the mature chondrocytes are embedded.

Location

Bones make up the majority of the axial and appendicular skeleton.

Cartilage is a much softer, more pliable component that is mostly found in between the joints of the bones, the rib cage, the ear, the nose, the bronchial tubes and the intervertebral discs.

Characteristics

Hard, inelastic and tough.

Soft, elastic and flexible.

Bone cells are known as osteocytes

Cartilage cells are known as chondrocytes

Has a vascular matrix, i.e. has blood vessels

Has a non-vascular matrix, i.e. does not have blood vessels

The matrix occurs in the lamellae

The matrix is a homogenous mass without lamellae

Matrix has a protein called ossein

Matrix has a protein called chondrin

The matrix is both organic and inorganic

The matrix is completely organic

The matrix has calcium salts, specifically calcium phosphates

The matrix may or may not have calcium salts

The bones have a rich blood supply

Each cartilage lacks blood supply except in perichondrium

Growth pattern of the bone is bidirectional

Growth pattern of the cartilage is unidirectional

Osteocytes have filopodia

Chondrocytes lack protoplasmic process

Lacunae gives off canaliculi

Lacunae lack canaliculi

Each lacunae has only one osteocytes (bone cell)

Each lacunae has 2-3 chondrocytes

Bone marrow is present and actually helps create blood cells

No bone marrow or similar structure

Haversian systems and Volkman’s canals are present

No Haversian systems or Volkman’s canals

Image Courtesy: oum.ox.ac.uk, eorthopod.com

Most Searched in Computers and Internets Most Searched in Pregnancy and Parenting
Top 10 Most Searched Differences Most Searched in Sports
Samsung Galaxy Mega 6.3 vs Samsung Galaxy Tab 2 7.0
Spoof vs Parody vs Satire
Asus FonePad vs HP Slate 7
Samsung Galaxy Note 8.0 vs Samsung Galaxy Note 10.1

Add new comment

Plain text

CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.